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Abstract

We propose a method to improve DNN robustness
against unseen noisy corruptions, such as Gaussian noise,
Shot Noise, Impulse Noise, Speckle noise with different lev-
els of severity by leveraging ensemble technique through a
consensus based prediction method using self-supervised
learning at inference time. We also propose to enhance
the model training by considering other aspects of the is-
sue i.e. noise in data and better representation learning
which shows even better generalization performance with
the consensus based prediction strategy. We report results
of each noisy corruption on the standard CIFAR10-C and
ImageNet-C benchmark which shows significant boost in
performance over previous methods. We also introduce re-
sults for MNIST-C and TinyImagenet-C to show usefulness
of our method across datasets of different complexities to
provide robustness against unseen noise. We show results
with different architectures to validate our method against
other baseline methods, and also conduct experiments to
show the usefulness of each part of our method.

1. Introduction
Generalization performance of Deep Neural Networks

(DNNs) is a very important objective, as the networks are
susceptible to fail against noise at test time. In recent years,
researchers have shown many examples of this kind [10],
which raises serious questions about deployment of the
seemingly good DNN models in the wild. Although these
issues were shown with known types of noise, this problem
is actually more challenging because it is difficult to predict
what noise will occur at test time.

Recent years have seen a few different efforts in develop-
ing models robust to unseen noise. Adversarial joint train-
ing [11] was one of the early efforts that focused on improv-
ing model robustness by enhancing model generalizability.
In particular, this method attempted to find a robust model
against noise by adversarial training with a supervised head
attached to the model. Though this method performed bet-
ter than a naturally trained model, there still existed a big
gap in performance between test accuracy on clean data and
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noisy data. More recently, [27] proposed a test-time train-
ing method to improve model generalization which showed
performance boost over [11] on noisy data. A more recent
work [1] further showed improvement over such test-time
training [27]. Augmentation-based methods, on the other
hand [2, 7, 12, 24] attempt to address model generalization
by carefully augmenting the training dataset through dif-
ferent means. However, augmentation methods require a
significant increase in the size of the training dataset, and
are also known to fail when the test-time distribution dif-
fers from the distribution of augmented training data [18].
In this work, we seek to propose a method that can address
model robustness to unseen noise by only training on clean
data (no additional training data including augmentations).

To this end, we take advantage of ensembled infer-
ence through a novel test-time consensus-based prediction
method that allows for better generalization at inference.
We show that such an approach shows excellent perfor-
mance against unseen noise, when compared with afore-
mentioned state-of-the-art baselines, especially when no
additional data beyond the clean training data is used for
training. Building on [27], this method leverages a self-
supervision pretext task at test-time to iteratively update the
model and predict the class label as a majority vote over
multiple predictions of updated models at inference. We
call this Test-Time Consensus Prediction (TTCP). In order
to further improve model performance against unseen noise,
we also propose an extended framework (TTCP++), where
a training phase is introduced to: (i) retrieve the latent data
manifold from clean data using the idea of quantized la-
tents [28]; and (ii) improve the representations learned by
the backbone network used in TTCP via knowledge dis-
tillation from a pre-trained teacher network. When quan-
tized latents are used, although the reconstructed images are
less noisy, due to the discrete nature of the latent space, the
method fails to preserve local texture details during image
reconstruction. We leverage knowledge distillation from a
pre-trained teacher to help the backbone network learn bet-
ter representations from such reconstructed images. Our re-
sults on multiple benchmark datasets show significant im-
provement over existing methods, corroborating our claim.



Figure 1. Proposed Test-Time Consensus Prediction (TTCP)
method

Our key contributions are as follows:
• We propose a novel test-time consensus prediction

(TTCP) strategy to achieve better model robustness
through improved generalization performance against
unseen noise.

• We propose an extended framework, TTCP++, to ex-
ploit quantized latents and knowledge distillation in a
training phase, to boost the performance of the pro-
posed TTCP method on unseen noise.

• Our results on CIFAR10-C and ImageNet-C are a sig-
nificant improvement over previous methods based on
improved training. We also studied our method on
MNIST-C and TinyImagenet-C datasets, which are the
first results in this context, and report strong results
here too.

• We perform consistently against all kinds of noise
on CIFAR10-C and ImageNet-C datasets compared to
augmentation-based methods, even without the use of
any augmentation and training only on clean data.

• Detailed ablation studies are presented showing the
usefulness of each component of our overall TTCP++
framework.

We discuss earlier efforts which are based on different
related perspectives, in Sec A which is deferred to Appendix
due to space constraints.

2. Proposed Methodology
We now introduce our Test-Time Consensus Prediction

method (TTCP) towards achieving improved robustness
against unseen noise. We then present the extension of our
method to TTCP++ which improves the training procedure
to further get improvements on noisy datasets.

2.1. Test-Time Consensus Prediction (TTCP)
Given training data {(xi, yi), i = 1, · · · , n} drawn i.i.d.

from a distribution P and model parameters θ, we consider
the classification task loss function Lm(xi, yi, θ) as the
main task. We leverage the fact that self-supervised learn-
ing empowers model training by improving the intermedi-
ate representation with better semantic meaning, which may

Algorithm 1: Test-Time Consensus Prediction
Input: Test sample x, Self-supervision head f

parametrized by θs, Classification head g
parametrized by θm, Pretrained backbone network
e parametrized by θe, Ground truth auxiliary task
output in ith step R∗i , Operator φ(·) which
converts a softmax output to a one-hot vector,
Number of classes for main classification task L

Output: Predicted class label for test sample x
1 Initialize vote counter. f = fpretrained ; e = epretrained;
2 for i = 1, 2, ...,M do
3 xss= T (x); (Random auxiliary transformation)
4 Compute auxiliary task prediction R̂i = f(e(xss))
5 Compute main classification task prediction ŷi =

g(e(xss))
6 Compute classwise vote Vi = I[R̂i = R∗i ] φ(ŷi)
7 Update θe
8 end
9 Predict class label argmax

j∈L
(
∑M

i=1(Vi))

be beneficial to a downstream task. The labels for a self-
supervised task can be generated for free, and a correspond-
ing supervised loss is computed based on the task. We refer
to the self-supervised task as auxiliary task which yields the
loss Lss(xi, yi, θ̃).

Now, consider a (Y-shaped) DNN represented as a back-
bone network with two task-specific heads – one for the
main classification task and the other for the auxiliary task.
Let the model parameters for the backbone network be θe,
the main task head be θm and the auxiliary task head be θs,
i.e. θ = (θe, θm) and θ̃ = (θe, θs). This DNN is trained
by minimizing the loss terms for both tasks, lm and lss. As-
suming the model parameters θe and θm are already trained
using a prior training procedure, following [27], we focus
our efforts on the test-time (or inference stage). Given a
test data point x forward-propagated through the abovemen-
tioned DNN, a gradient step is taken with the objective of
minimizing the auxiliary task loss on x i.e.

min
θe
Lss(x, θe, θs) (1)

For such a gradient step which updates the shared back-
bone network parameters θ∗e , the model predicts a class la-
bel (main task) through the parameters (θ∗e , θm).

Leverage the capabilities of self-supervision and shared
parameter updation at test-time, an auxiliary transforma-
tion (e.g. rotation, which defines a corresponding self-
supervised task – rotation prediction in this case) is applied
to x and passed through the network. At the ith such test-
time step, we observe both the prediction of the auxiliary
task as well as the main task before the gradient step is taken
to update the shared backbone parameters. Let R∗i denoted
the true label for the auxiliary task in the ith step and R̂i
denote the predicted auxiliary task output in the same step.



This step is performed a pre-defined number of times, each
time with a different auxiliary transformation applied to x
under the same self-supervised task (different rotation an-
gle, for example).

At the completion of these steps, we define our final out-
put of test-time consensus prediction as:

argmax
j∈L

(
∑
i

I[R̂i = R∗i ] φ(ŷi)) (2)

where φ(.) returns a one-hot vector given a softmax output
(with the winning position denoted by a 1 and rest zeros), I
is the indicator function, L is the number of classes for the
main classification task, ŷ is the predicted softmax output
of the main classification task, and Ci = argmax

j∈L
(ŷi). In

words, Eqn 2 states that our final output is the consensus of
predictions on the main classification output for every trans-
formed input where the auxiliary task head predicts the cor-
rect expected output. We term this complete strategy Test-
Time Consensus Prediction (TTCP). The TTCP method is
summarized in Fig 1, and described in Algorithm 1. We
note that similar to [27], only a few steps are required at
test-time thereby resulting in minimal computational over-
head (described further in Sec B).
2.2. Beyond Test-Time Consensus Prediction

(TTCP++)
While TTCP focuses only on test-time, we observe that

improvements in obtaining a more robust representation of
input data can further help TTCP. To this end, we include
a training phase procedure for handling unknown noise at
test-time. In particular, we propose a two-staged approach:
(i) retrieve the latent data manifold from given clean train-
ing data; and (ii) improve the feature representations of
the backbone network using knowledge distillation. We
now describe each of these steps that together comprise
TTCP++.
Retrieving the latent data manifold: Removing noise
from data has long been an important topic of research. It is
generally hypothesized that a data point x and its noisy ver-
sion xnoise are arbitrarily close on the true data manifold.
One of the well-known approaches to retrieve this true data
manifold is to use a denoising autoencoder (DA) [29]. Such
an approach attempts to remove noise by generating clean
images from its noisy version, and works if the type of noise
is known beforehand. However, such an approach does not
work well (shown in our ablation studies) when handling
unknown or unseen noise, given only clean data at train-
ing time. We hence instead propose to leverage the idea
of quantized latents to mitigate noise in data. Discretiza-
tion inherently makes two different but nearby points from
the given data distribution map to the same point or bring
them closer in the latent data manifold. We follow a vector
quantization-based approach [28] to achieve this objective.

Our model consists of a standard convolutional encoder-
decoder architecture with an intermediate vector quantiza-

tion (VQ) layer which takes care of building a discrete la-
tent space. More specifically, the encoder network, Ze, is a
fully convolutional neural network which maps input im-
ages to an output feature map of size w × h × d. This
provides w × h d-dimensional vectors, each of which is
mapped to one latent code from a set of k learned latent
codes {e1, · · · , ek} ∈ Rd through a mapping (VQ) layer.
This is achieved by minimizing the L2-distance between
each of the d-dimensional vectors (obtained as output ofZe)
with the latent codes eis, i.e.

Ẑe(p, q, :) = ej , where j = arg min
i∈{1,··· ,k}

||Ze(p, q, :)−ei||2
(3)

where Ze denotes Ze(x) for a given input x, p and q are in-
dices over w × h d-dimensional vectors. The output of the
encoder hence is Ẑe(x), a w×h×d feature map, where the
depth vector at each pixel is replaced by the nearest latent
code vector. Ẑe(x) is then provided as input to a fully con-
volutional decoder, Zd, which attempts to reconstruct the
input image.

Due to the discrete bottleneck layer in between, the train-
ing of this model is not straightforward. The training objec-
tive includes the reconstruction loss (mean squared error)
and two VQ-based loss terms which guarantee that encoder
outputs stay close to the embedding vector entries they are
matched to, as below:

arg min
Ẑe,Zd,{ei}

log p
(
x̃|Ẑe(x)

)
+ ||Ze(x)− Ẑe(x)||2

+ ||Ze(x)− Ẑe(x)||2 (4)

where ·· denotes the stop gradient operation, i.e., during for-
ward pass, this corresponds to the identity, but during back-
propagation, no gradients flow through this operation. We
follow [28] for the rest of the training procedure.

Importantly, we use clean training data to learn vector
quantized latents and show that the trained model works
well with unseen noise at test-time. We find that this model
is capable of removing local textures (including noise), but
keeps the global content of an image while reconstructing
the image. (We note that this step is offline, and can be
done prior to the training of the backbone network used in
TTCP.) We present sample visualizations in Figs 3, 5 and 6
for different noises on images from CIFAR10-C, MNIST-C
and Tiny-ImageNet-C dataset to show the potential of this
method.
Learning robust representations: While the above step
captures global details of the original image, it also misses
texture details of original image (as shown in Figs 3). Due
to this lossy nature of the reconstructed images, we noticed
that the models, trained with these images – while handling
unseen noise – report a drop in clean test accuracy (∼9–
10%) compared to a model trained on normal data.

To address this issue, we consider a pretrained (on clean
data) Teacher Network. Our objective herein is to lever-



Figure 2. Overall framework of TTCP++

age the guidance of the teacher network to help the student
model in learning refined representations from images only
with the global content obtained as output of the quantized
latent (VQ) step above. The said purpose is achieved by
incorporating the following objective:

LKD = ||logit(T (x))− logit(S(xrecons))||2 (5)

where T (·) denotes the pretrained teacher network, S(·) de-
notes our backbone network from TTCP (student network
in this context), logit(·) represents the logits of the corre-
sponding network, and xrecons denotes the reconstructed
image obtained from the previous step when x is provided
as input. The student network architecture here follows a
Y-shape structure (similar to TTCP, for later use of TTCP at
test-time) and contains a self-supervision head and a clas-
sification head for auxiliary task prediction and classifica-
tion respectively. Both these heads follow a shared back-
bone network. Altogether, the student network is trained
with standard classification loss (cross-entropy loss), self-
supervision loss (auxiliary prediction loss) and logit simi-
larity loss (minimizing the L2 distance of logits generated
by teacher and student), as given below:

L = LCE + LSS + LKD (6)

whereLCE denotes cross entropy loss andLSS denotes self
supervision loss, as before in Sec 2.1.
Inference/Test-time: After the training phase, during in-
ference, we input the test data through the VQ module to
obtain the reconstructed image. This is then input to the
TTCP module to obtain the final prediction as in Sec 2.1.
We name this extension TTCP++ when we consider vec-
tor quantization and a pretrained teacher network for model
training along with TTCP during inference time. Adding
this training phase helps improve clean accuracy by ∼3%.

Additionally, with this training phase, TTCP during infer-
ence phase also achieves improvements on clean test accu-
racy (∼3.5%) as well as improvements on unseen noisy test
data (ranging from 6-10% across different noise).

We conducted a comprehensive suite of experiments
which are discussed in detail in Sec B of Appendix,
which shows promising improvement in performance over
baseline methods. Ablation studies of individual compo-
nents and other combinations are studied in Sec C of Ap-
pendix which justifies importance of all these components.
We report results with our method on CIFAR10-C, Tiny-
ImageNet-C, ImageNet-C and MNIST-C datasets [10], go-
ing beyond earlier related methods – joint training (JT) [11],
test-time training (TTT) [27] and SSDN [1] – which focused
on CIFAR10-C.

3. Conclusions and Future Work
Most real-world environments are inherently noisy, thus

hindering DNN models from being deployed in real-world
applications, especially in in-the-wild with unknown or un-
seen noise. In this work, we propose a simple yet effec-
tive test-time consensus prediction (TTCP) approach that
addresses model robustness to robust noise with training
only on clean data. We further propose an extended version,
TTCP++, where we add a training phase based on quantized
latents and knowledge distillation, that helps improve the
performance of TTCP further on unseen noise. Our com-
prehensive results on multiple benchmark datasets against
state-of-the-art baselines show significant promise in using
our approach for deploying DNN models in in-the-wild set-
tings with unseen noise.
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